10.8 Case Study: ADate Class (cont.)

Date Class Postfix Increment Operator
« Overloading the postfix increment operator (defined in Fig. 10.7, lines
49-56) Is trickier.
 To emulate the effect of the postincrement, we must return an
unincremented copy of the Date object.

* So we’d like our postfix increment operator to operate the same way on
a Date object.

 Onentry to operator++, we save the current object (*th1is) in
temp (line 51).

« Next, we call helpIncrement to increment the current Date object.

 Then, line 55 returns the unincremented copy of the object previously
stored in temp.

 This function cannot return a reference to the local Date object temp,
because a local variable 1s destroyed when the function in which it’s
declared exits.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 10.1

Returning a reference (or a pointer) to a local variable is
a common error for which most compilers will issue a

warning.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management

You can control the allocation and deallocation of memory in a
program for objects and for arrays of any built-in or user-defined type.

— Known as dynamic memory management; performed with new and delete.

You can use the new operator to dynamically allocate (i.e., reserve) the
exact amount of memory required to hold an object or built-in array at
execution time.

The object or built-in array is created in the free store (also called the
heap)—a region of memory assigned to each program for storing
aynamically allocated objects.

Once memory is allocated in the free store, you can access it via the
pointer that operator new returns.

You can return memory to the free store by using the de 1 ete operator
to deallocate it.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

Obtaining Dynamic Memory with new

* The new operator allocates storage of the
proper size for an object of type T1me, calls
the default constructor to initialize the object
and returns a pointer to the type specified to
the right of the new operator (i.e.,a T1me ¥*).

 If new is unable to find sufficient space In
memory for the object, it indicates that an error
occurred by “throwing an exception.”

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

Releasing Dynamic Memory with delete

To destroy a dynamically allocated object, use

the de 1ete operator as follows:
« delete ptr;

This statement first calls the destructor for the
obyject to which ptr points, then deallocates
the memory associated with the object,
returning the memory to the free store.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Common Programming Error 10.2

.

g% Not releasing dynamically allocated memory when it’s
no longer needed can cause the system to run out of
memory prematurely. This is sometimes called a
“memory leak.”

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

‘ % Error-Prevention Tip 10.1

Do not delete memory that was not allocated by new.
Doing so results in undefined behavior.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

(S

Error-Prevention Tip 10.2

After you delete a block of dynamically allocated
memory be sure not to delete the same block again. One
way to guard against this is to immediately set the
pointer to nul1ptr. Deleting a nul1ptr has no effect.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

Initializing Dynamic Memory

You can provide an initializer for a newly

created fundamental-type variable, as in
« double *ptr = new double(3.14159);

The same syntax can be used to specify a
comma-separated list of arguments to the
constructor of an object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

Dynamically Allocating Built-In Arrays with new []

* You can also use the new operator to allocate built-in arrays
dynamically.

« For example, a 10-element integer array can be allocated and

assigned to gradesArray as follows:
 int *gradesArray = new int[10]1Q);

« The parentheses following new 1nt[10] value initialize the
array’s elements—fundamental numeric types are set to 0,
bools are setto false, pointers are set to nul 1ptr and class
objects are initialized by their default constructors.

* A dynamically allocated array’s size can be specified using any
non-negative integral expression that can be evaluated at
execution time.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

C++11: Using a List Initializer with a Dynamically Allocated
Built-In Array

* Prior to C++11, when allocating a built-in array of objects
dynamically, you could not pass arguments to each object’s
constructor—each object was initialized by its default
constructor. In C++11, you can use a list initializer to initialize
the elements of a dynamically allocated built-in array, as in

int *gradesArray = new int[10]{};

« The empty set of braces as shown here indicates that default
Initialization should be used for each element—for
fundamental types each element is set to O.

« The braces may also contain a comma-separated list of
initializers for the array’s elements.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

Releasing Dynamically Allocated Built-In
Arrays with delete []

» To deallocate a dynamically allocated array,
use the statement
« delete [] ptr;

» [T the pointer points to a built-in array of
objects, the statement first calls the destructor

for every obyject In the array, then deallocates
the memory.

« Using deleteor[.].onanullptr hasno

Common Programming Error 10.3

Using delete instead of delete [] for built-in arrays
of objects can lead to runtime logic errors. To ensure that
every object in the array receives a destructor call,
always delete memory allocated as an array with
operator delete []. Similarly, always delete memory
allocated as an individual element with operator
delete—the result of deleting a single object with
operator delete [] is undefined.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

C++11.: Managing Dynamically Allocated
Memory with unique_ptr

¢ C++11’snew unique_ptr isa “smart
pointer” for managing dynamically allocated
memory.

« When a unique_ptr goes out of scope, its
destructor automatically returns the managed
memory to the free store.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class

 Pointer-based arrays have many problems, including:

A program can easily “walk off” either end of a built-in array,
because C++ aoes not check whether subscripts fall outside the
range of the array.

Built-in arrays of size 7 must number their elements O, ..., 7—1;
alternate subscript ranges- are not allowed.

An entire built-in array cannot be input or output at once.

Two built-in arrays cannot be meaningfully compared with equality
or relational operators.

When an array is passed to a general-purpose function designed to
handle arrays of any size, the array’s size must be passed as an
additional argument.

One built-in array cannot be assigned to another with the
assignment operator.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

