
10.8 Case Study: A Date Class (cont.)
Date Class Postfix Increment Operator

• Overloading the postfix increment operator (defined in Fig. 10.7, lines
49–56) is trickier.

• To emulate the effect of the postincrement, we must return an
unincremented copy of the Date object.

• So we’d like our postfix increment operator to operate the same way on
a Date object.

• On entry to operator++, we save the current object (*this) in
temp (line 51).

• Next, we call helpIncrement to increment the current Date object.

• Then, line 55 returns the unincremented copy of the object previously
stored in temp.

• This function cannot return a reference to the local Date object temp,
because a local variable is destroyed when the function in which it’s
declared exits.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management

• You can control the allocation and deallocation of memory in a
program for objects and for arrays of any built-in or user-defined type.
– Known as dynamic memory management; performed with new and delete.

• You can use the new operator to dynamically allocate (i.e., reserve) the
exact amount of memory required to hold an object or built-in array at
execution time.

• The object or built-in array is created in the free store (also called the
heap)—a region of memory assigned to each program for storing
dynamically allocated objects.

• Once memory is allocated in the free store, you can access it via the
pointer that operator new returns.

• You can return memory to the free store by using the delete operator
to deallocate it.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

Obtaining Dynamic Memory with new

• The new operator allocates storage of the

proper size for an object of type Time, calls

the default constructor to initialize the object

and returns a pointer to the type specified to

the right of the new operator (i.e., a Time *).

• If new is unable to find sufficient space in

memory for the object, it indicates that an error

occurred by ―throwing an exception.‖
©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

10.9 Dynamic Memory Management (cont.)

Releasing Dynamic Memory with delete

• To destroy a dynamically allocated object, use

the delete operator as follows:
• delete ptr;

• This statement first calls the destructor for the
object to which ptr points, then deallocates

the memory associated with the object,
returning the memory to the free store.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

Initializing Dynamic Memory

• You can provide an initializer for a newly

created fundamental-type variable, as in
• double *ptr = new double(3.14159);

• The same syntax can be used to specify a

comma-separated list of arguments to the

constructor of an object.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

Dynamically Allocating Built-In Arrays with new []

• You can also use the new operator to allocate built-in arrays

dynamically.

• For example, a 10-element integer array can be allocated and

assigned to gradesArray as follows:

• int *gradesArray = new int[10]();

• The parentheses following new int[10] value initialize the

array’s elements—fundamental numeric types are set to 0,

bools are set to false, pointers are set to nullptr and class

objects are initialized by their default constructors.

• A dynamically allocated array’s size can be specified using any

non-negative integral expression that can be evaluated at

execution time.
©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

10.9 Dynamic Memory Management (cont.)

C++11: Using a List Initializer with a Dynamically Allocated

Built-In Array

• Prior to C++11, when allocating a built-in array of objects

dynamically, you could not pass arguments to each object’s

constructor—each object was initialized by its default

constructor. In C++11, you can use a list initializer to initialize

the elements of a dynamically allocated built-in array, as in
int *gradesArray = new int[10]{};

• The empty set of braces as shown here indicates that default

initialization should be used for each element—for

fundamental types each element is set to 0.

• The braces may also contain a comma-separated list of

initializers for the array’s elements.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

Releasing Dynamically Allocated Built-In

Arrays with delete []

• To deallocate a dynamically allocated array,

use the statement
• delete [] ptr;

• If the pointer points to a built-in array of

objects, the statement first calls the destructor
for every object in the array, then deallocates

the memory.

• Using delete or [] on a nullptr has no

effect.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.9 Dynamic Memory Management (cont.)

C++11: Managing Dynamically Allocated

Memory with unique_ptr

• C++11’s new unique_ptr is a ―smart

pointer‖ for managing dynamically allocated

memory.

• When a unique_ptr goes out of scope, its

destructor automatically returns the managed

memory to the free store.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.10 Case Study: Array Class

• Pointer-based arrays have many problems, including:

– A program can easily ―walk off‖ either end of a built-in array,
because C++ does not check whether subscripts fall outside the
range of the array.

– Built-in arrays of size n must number their elements 0, …, n – 1;
alternate subscript ranges- are not allowed.

– An entire built-in array cannot be input or output at once.

– Two built-in arrays cannot be meaningfully compared with equality
or relational operators.

– When an array is passed to a general-purpose function designed to
handle arrays of any size, the array’s size must be passed as an
additional argument.

– One built-in array cannot be assigned to another with the
assignment operator.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

